Rational and algebraic series in combinatorial enumeration
نویسنده
چکیده
Let A be a class of objects, equipped with an integer size such that for all n the number an of objects of size n is finite. We are interested in the case where the generating function ∑ n ant n is rational, or more generally algebraic. This property has a practical interest, since one can usually say a lot on the numbers an, but also a combinatorial one: the rational or algebraic nature of the generating function suggests that the objects have a (possibly hidden) structure, similar to the linear structure of words in the rational case, and to the branching structure of trees in the algebraic case. We describe and illustrate this combinatorial intuition, and discuss its validity. While it seems to be satisfactory in the rational case, it is probably incomplete in the algebraic one. We conclude with open questions. Mathematics Subject Classification (2000). Primary 05A15; Secondary 68Q45.
منابع مشابه
Half-Century Journey from Synthetic Organic Chemistry to Mathematical Stereochemistry through Chemoinformatics
My half-century journey started from synthetic organic chemistry. During the first stage of my journey, my interest in stereochemistry was initiated through the investigation on the participation of steric effects in reactive intermediates, cylophanes, strained heterocycles, and organic compounds for photography. In chemoinformatics as the next stage of the journey, I proposed the concept of im...
متن کاملHYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC
Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...
متن کاملSome Algebraic and Combinatorial Properties of the Complete $T$-Partite Graphs
In this paper, we characterize the shellable complete $t$-partite graphs. We also show for these types of graphs the concepts vertex decomposable, shellable and sequentially Cohen-Macaulay are equivalent. Furthermore, we give a combinatorial condition for the Cohen-Macaulay complete $t$-partite graphs.
متن کاملTranscendence of Formal Power Series with Rational Coefficients
We give algebraic proofs of transcendence over Q(X) of formal power series with rational coeecients, by using inter alia reduction modulo prime numbers, and the Christol theorem. Applications to generating series of languages and combinatorial objects are given.
متن کاملNew constructs for the description of combinatorial optimization problems in algebraic modeling languages
Algebraic languages are at the heart of many successful optimization modeling systems, yet they have been used with only limited success for combinatorial (or discrete) optimization. We show in this paper, through a series of examples, how an algebraic modeling language might be extended to help with a greater variety of combinatorial optimization problems. We consider specifically those proble...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006